Is this course for me?

If you are a high-motivated student who is passionate about studying Chemistry, the University of Oxford offers an unrivalled environment in which to study. The course will introduce many topics that are completely new to you but is sufficiently wide-ranging that you will be able to specialise in any area of Chemistry you wish.

What qualifications will I need?

The standard offer is A*A*A at A Level or equivalent, plus A-Level Maths. However, we are always looking for bright and able students from all backgrounds and we welcome applications from candidates who do not have these grades.

What is the role of the college?

All students who come to Oxford University are admitted by a College. Each college has its own particular history, ethos and traditions. The College provides students with affordable accommodation for at least two years, and access to a social hub. The extracurricular opportunities are practised and fair.

What are the tutors looking for?

We want to see that you have a genuine enthusiasm for and commitment to Chemistry. We are looking for students who can think independently and who are prepared to work hard and think out proposals and responses forward during discussion, to draw inferences from them and to work through them.

What can I do after I finish my degree?

Chemistry is a demanding degree. The chemical industry is very important for the economy of the country (pharmaceutical, petrochemical, fine chemicals etc.) and there are many opportunities in analytical chemistry in industry, the environment and in forensics. In all these areas there are both large and small companies, all needing well qualified chemists, either directly from the M.Chem, or following a postgraduate degree. The Oxford Chemistry department also has an unrivalled record at commercialising its own inventions through spin-out companies.

Chemistry at Oxford is a four year course leading to the degree of M.Chem. (with honours). The course provides a high level education in the subject with sufficient flexibility to enable students to specialise in the areas of greatest interest to them and to venture into overlapping scientific disciplines.
Why study Chemistry at Oxford?

Chemistry is the study of the world around us at the atomic and molecular scale. It occupies a central position among the sciences, interfacing with mathematics and physics, with engineering, and with biology and medicine.

How is the course structured?

Oxford students work for extended periods, so we do not offer joint degree courses involving Chemistry. However, Chemistry at Oxford is very academically rigorous, there are ample opportunities for broadening your studies beyond Chemistry, and you have the option to diversify into other areas via optional supplementary modules.

Teaching at Oxford University

- In the first year, students study a range of topics, including inorganic, organic, and physical chemistry.
- In the second year, the focus is on more advanced topics, including quantum mechanics, spectroscopy, and thermodynamics.
- In the third year, students take a more advanced course, focusing on specific areas of their interest.
- The final year is a research year, where students work on a project supervised by a member of staff.

Practical Classes

- All students are required to attend practical classes, where they carry out experiments and learn how to use laboratory equipment.
- These classes are designed to help students develop their analytical and problem-solving skills.

Research Project

- The research project is a significant piece of work, typically involving a year of full-time research.
- Students work closely with a supervisor to develop their project, and present their findings at a departmental seminar.

Teaching at Oxford University

- The course is very challenging, and students are expected to work hard.
- However, it is also very rewarding, and students often find the experience to be one of the highlights of their academic career.

Practical Classes

- All students are required to attend practical classes, where they carry out experiments and learn how to use laboratory equipment.
- These classes are designed to help students develop their analytical and problem-solving skills.

Research Project

- The research project is a significant piece of work, typically involving a year of full-time research.
- Students work closely with a supervisor to develop their project, and present their findings at a departmental seminar.

Teaching at Oxford University

- The course is very challenging, and students are expected to work hard.
- However, it is also very rewarding, and students often find the experience to be one of the highlights of their academic career.

**Chemistry Brochure print.indd 2

10/04/2015 10:17

[Image 20x20 to 1813x881]

**Chemistry Brochure print.indd 2

10/04/2015 10:17

[Image 20x20 to 1813x881]
Chemistry is the study of the world around us at the atomic and molecular scale. It occupies a central position among the sciences, interfacing with mathematics and physics, with engineering, and with biology and medicine.

Why study Chemistry at Oxford?

Chemistry's unique role in the material basis of modern civilization, and interests are a core indicator of its success for another. A bright idea is more than just being a buffer between one's past and one's future, it is a set of tools that is used to explore and understand the world around us. It is from this foundation of tools that are derived from the understanding of both chemistry and physics that we can find the answers to the questions that drive our society forward.

In this section, we explore the unique combination of undergraduate and graduate programs offered at Oxford University, and the benefits of studying Chemistry at this world-renowned institution.

How is the course structured?

Oxford's unique course in Chemistry is one of the most comprehensive programs available in the world. The course is designed to provide students with a broad understanding of the fundamental concepts and principles of chemistry, as well as an introduction to the latest research and developments in the field.

The course is divided into three main parts. Part I covers the fundamental concepts of chemistry, including topics such as quantum mechanics and molecular structure. Part II focuses on the application of chemistry to real-world problems, with a focus on areas such as materials science and environmental chemistry. Part III is dedicated to research training and provides students with the opportunity to work on a research project.

The course is taught by leading experts in the field, and students have the opportunity to engage in research projects that are at the forefront of scientific inquiry. The course is designed to prepare students for a career in research, or for further study in a related field.

Teaching at Oxford University

There are three distinctive features that make the Oxford course unique.

1. The small class size, which allows for more personal interaction and feedback from lecturers.
2. The opportunity to engage in research projects, which provides students with hands-on experience and exposure to cutting-edge research.
3. The combination of theoretical and practical coursework, which prepares students for a variety of careers.

Practical Classes

The aim of the practical course is to provide students with the opportunity to apply their theoretical knowledge gained in lectures and through self-study.

Through practical classes, students learn to carry out experiments, analyze data, and draw conclusions from their results.

Research Project

In your fourth year, you will be required to carry out a research project. This provides an opportunity to apply your research skills and to explore a topic of your own choosing.

The project will be supervised by a member of the academic staff, and you will have the opportunity to work closely with them to develop your research question and methodology.

As such, projects are a significant challenge for both students and supervisors.

As a result, the choice of research project is often seen as one of the most important decisions that students will make during their time at Oxford.

A full list of all the students who were interviewed for this guide will be provided at the back of the guide.

* Some supplementary subjects, such as Analytical Chemistry, Materials Science, and Environmental Chemistry, are taught as part of the syllabus. These subjects are essential for students who wish to pursue a career in research or industry.

** Supplementary subjects include Analytical Chemistry, Materials Science, and Environmental Chemistry.
Why study Chemistry at Oxford?

Chemistry is one of the most fundamental of the natural sciences. It is the foundation on which modern science is based. From the most advanced laboratory to the most remote corner of the world, chemistry provides the answers to questions about the universe. From the structure and function of DNA to the intellectual limit of the human brain, chemistry is the science of life.

Why study Chemistry at Oxford?

Oxford is well suited for students of Chemistry, as we do not offer joint degree courses involving Chemistry. However, Chemistry at Oxford has a wide scope, there is an excellent way to develop your intellect. Chemistry's span within the scientific spectrum, is an excellent way to develop your intellect. It occupies a central position among the sciences, interfacing with mathematics and physics, with engineering, and with biology and medicine.

How is the course structured?

2nd year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core material</td>
<td>Further core material, plus formal lectures on chemistry, tutorials and practicals</td>
</tr>
<tr>
<td>Further core material</td>
<td>Formal lectures on chemistry, tutorials and practicals</td>
</tr>
<tr>
<td>Optional supplementary material</td>
<td>Further formal lectures on chemistry, tutorials and practicals</td>
</tr>
<tr>
<td>Assessment</td>
<td>Written examination, short answer questions, practical exam, coursework, project</td>
</tr>
</tbody>
</table>

3rd year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core material</td>
<td>Further core material, plus formal lectures on chemistry, tutorials and practicals</td>
</tr>
<tr>
<td>Further core material</td>
<td>Formal lectures on chemistry, tutorials and practicals</td>
</tr>
<tr>
<td>Optional supplementary material</td>
<td>Further formal lectures on chemistry, tutorials and practicals</td>
</tr>
<tr>
<td>Assessment</td>
<td>Written examination, short answer questions, practical exam, coursework, project</td>
</tr>
</tbody>
</table>

Teaching at Oxford University

There are three distinctive features that make the course unique and exciting.

1. **Teaching quality**: Our students are taught by some of the leading scientists in their fields, with a significant number of them being awarded the Royal Society's top scientific prize, the RSC Award. The course is designed to be an excellent way to develop your intellect. It occupies a central position among the sciences, interfacing with mathematics and physics, with engineering, and with biology and medicine.

2. **Research opportunities**: The course provides a variety of research opportunities, including options for students to carry out a research project as part of their degree. This allows students to gain valuable research experience and develop their skills in a particular area of interest.

3. **Interdisciplinary learning**: The course is designed to be interdisciplinary, allowing students to explore the connections between chemistry and other sciences. This interdisciplinary approach is reflected in the wide range of degree tracks available, including options in biochemistry, materials science, and theoretical chemistry.

Practical Classes

Practical classes are an integral part of the course, allowing students to gain hands-on experience in the laboratory. These classes cover a broad range of topics, from basic laboratory skills to more advanced experimental techniques. The practical classes are assessed throughout the year, contributing to 15% of the final degree mark.

4th year

In the fourth year, students have the option of leaving after three years with an honours degree in Chemistry. However, students can also choose to continue for a fourth year to pursue a research project. This research project is assessed at the end of the fourth year and comprises 6 general papers relating to the subject. Students benefit from close contact with the academic staff, and the examinations. The subject matter of the project is selected by the student, and the examinations cover material from the first two years and count 15% towards the degree.

Assessment

Assessment for Chemistry includes written examinations, practical assessments, and coursework. The written examinations are a significant component of the assessment, covering both theoretical and practical aspects of the course.

1st Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
</table>
| Core material | Core material, including chemical analysis, and the essential experimental skills, from the main sections. The practical course teaches the essential experimental skills, from the main sections.
| Practical Chemistry | Assesses the skills of the student in the practical classes |
| Assessment | Written examination, three written papers |
| Assessment | Written examination, two written papers |

2nd Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
</table>
| Core material | Core material, including chemical analysis, and the essential experimental skills, from the main sections. The practical course teaches the essential experimental skills, from the main sections.
| Practical Chemistry | Assesses the skills of the student in the practical classes |
| Assessment | Written examination, two written papers |

3rd Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
</table>
| Core material | Core material, including chemical analysis, and the essential experimental skills, from the main sections. The practical course teaches the essential experimental skills, from the main sections.
| Practical Chemistry | Assesses the skills of the student in the practical classes |
| Assessment | Written examination, two written papers |

4th Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
</table>
| Core material | Core material, including chemical analysis, and the essential experimental skills, from the main sections. The practical course teaches the essential experimental skills, from the main sections.
| Practical Chemistry | Assesses the skills of the student in the practical classes |
| Assessment | Written examination, two written papers |

Career prospects

Chemistry graduates are in demand in a wide range of industries, including pharmaceuticals, biotechnology, materials science, and environmental science. Graduates go on to work in a variety of roles, from research and development to sales and marketing. Many also choose to continue their studies, pursuing a career in academia or industry.
Is this course for me?

If you are a high-attaining student who is passionate about studying Chemistry, the University of Oxford offers an unrivalled environment in which to study. The course will introduce many topics that are completely new to you as a high-attaining student. By the end of the course you will be able to specialise in any area of Chemistry you wish.

What qualifications will I need?

The standard departmental offer is A*A*A, both in Mathematics and in Science or Mathematics. General Studies will not be included in offers. Typically candidates will have GCSEs at Grades A* or A in Science, Mathematics and English. Further Mathematics is also very helpful, especially for those planning to read Mathematics, Physics and Engineering. The requirements of colleges may vary slightly, the Tutor for Admissions at any particular College may be consulted.

What is the role of the college?

All students who come to Oxford University are admitted by a College. Each College has its own particular history and ethos, and every student is involved in its life for four years. The College provides students with affordable accommodation for at least two terms (and at least for the first term) and in much of the Costs. The social and intellectual opportunities to be found within colleges are almost unlimited, whether your interests are music, sport, politics, public service – there will be a society for you in Oxford. There is no name a College at the application stage, but it is not necessary to do this. A third of students happily end up at a College different to the one they originally expected! The College is primary responsible for the welfare and academic progress and for supporting them in welfare issues.

What are the tutors looking for?

Your application will be assessed on the basis of your UCAS application form; if rejected, on the basis of any interview. The Department is considering the possibility of introducing an aptitude test, and you may be asked to take such a test.

Your application will be assessed by the Tutors in the College you have applied to according to the rules laid down by the University and by the College. Your application will be assessed on the basis of your academic performance and your personal statement. The tutors will assess your academic ability and your motivation to study Chemistry. They will have encountered many excellent academic students, and they are looking for those who have a genuine passion for the subject and who have the potential to succeed. This means that you will need to provide clear evidence of your ability and motivation in your written application.

Further Mathematics are also very helpful because of its importance in the quantitative parts of the subject. Physics and Biology are also very helpful, but are not essential. Further Mathematics is available at A Level and at AS Level. Both these qualifications will be assessed.

The fantastic thing about chemistry: I have a fantastic tutor!

Chemistry at Oxford is a four year course leading to the degree of M.Chem. (with honours). The course provides a high level education in the subject with sufficient flexibility to enable students to specialise in the areas of greatest interest to them and to venture into overlapping scientific disciplines.

What can I do after I finish my degree?

Chemistry is a demanding degree. The chemical industry is very important for the economy of the country (particularly the petrochemical, fine chemicals etc.). In addition there are many opportunities in analytical chemistry in industry and in institutions for all these areas. There are both large and small companies, all needing well-qualified chemists, either directly from the M. Chem. or following a postgraduate degree. The Oxford Chemistry department also has an unrivalled record at commercialising its own inventions through spin-off companies.

Put lots of effort into your personal statement

You are not expected to know material outside your normal syllabus, but you will be tested on how well you understand the material and whether you have thought about it and what you can do with it. The tutorial system is designed to challenge you in productive and creative ways. You will be encouraged to think deeply as possible. This will almost certainly involve applying the topics you will encounter already, whether you have met them or not. You will be expected to prepare for tutorials in advance and to present your ideas in tutorial.

Open Day

We have found that it is better to find out what Oxford is really like by visiting us. The Oxford Chemical Show is a great opportunity to talk to tutors and students about the course, and in the January term we open the option to attend an extra Chemistry Show. You will have plenty of time to visit Colleges where you can talk directly to tutors and students to help you make your decision. For details, please see the University’s Admissions Information Centre (http://admissions.chem.ox.ac.uk). For more information on applying to Oxford, please visit: http://admissions.chem.ox.ac.uk.

Get in touch

The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.

For further information on the course, please contact Oxford University Chemistry Information Centre admissions@chem.ox.ac.uk. The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.

Contact Chemistry at Oxford, please do email: admissions@chem.ox.ac.uk. The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.

Contact Chemistry at Oxford, please do email: admissions@chem.ox.ac.uk. The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.

Contact Chemistry at Oxford, please do email: admissions@chem.ox.ac.uk. The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.

Contact Chemistry at Oxford, please do email: admissions@chem.ox.ac.uk. The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.

Contact Chemistry at Oxford, please do email: admissions@chem.ox.ac.uk. The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.

Contact Chemistry at Oxford, please do email: admissions@chem.ox.ac.uk. The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.

Contact Chemistry at Oxford, please do email: admissions@chem.ox.ac.uk. The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.

Contact Chemistry at Oxford, please do email: admissions@chem.ox.ac.uk. The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.

Contact Chemistry at Oxford, please do email: admissions@chem.ox.ac.uk. The College’s website www.chem.ox.ac.uk provides more information on the course, advice on applying, application guidance and general information about the university itself and its excellent and award winning research.
Is this course for me?
If you are a high-motivated student who is passionate about studying Chemistry, the University of Oxford offers an unrivalled environment to study. The course will introduce many topics that are completely new to you as a sophomore according to the end of the course you will be able to specialise in any area of Chemistry you want.

What qualifications will I need?
The standard degree offer is A*A*A, both in Chemistry or Physics and Mathematics. General Studies will not be included in either of the offers, however Wochenendlehranstalt and St. Paul’s are occasionally accepted. We accept a number of international qualifications and students who have obtained good grades are highly prized. Your academic reference and your personal statement will be important in the assessment of your application.

What is the role of the college?
All students who come to Oxford University are submitted by an Oxford College. Each college has its own particular history, traditions, and ethos, so that students who move up to a College different to the one they originally expected the College to be can still be part of a like-minded community of students in order to support their academic progress and for supporting them in extra-curricular activities.

What are the tutors looking for?
In order to be accepted onto the course, you will need to pass the UCAS application form and if rejected, an interview. The interview is assessing your general approach to the possibility of introducing an aptitude test, and your ability to cope with it. Your application will be assessed by the tutors in the College you have applied to according to the indicated level in the Department. They will be looking for evidence of previous academic ability and of your enthusiasm to study Chemistry. They will have your judgement on your academic work, your interest in the academic field, your personal statement, and your potential interest in the subject. Your tutors will also have a good chance of success as invited to interview.

You will be well qualified for the course if you are studying Chemistry and Mathematics. A level of Mathematics is essential. Physics and Biology are also valuable. The topics at the University level are generally very different to those at the A level. Physics and Chemistry are also very different to those at the GCSE level.

The requirements of colleges may vary slightly, the Tutors for Admissions at any particular College may be consulted.

What can I do after I finish my degree?
Chemistry is a versatile degree. The chemical industry is very important for the economy of the country (pharmaceuticals, petrochemicals, fine chemicals, etc.). In addition there are many opportunities in analytical chemistry in the environment and in proteins in all these areas. There are both large and small companies, all needing well qualified chemists, either directly from the MChem or following a postgraduate degree. The Oxford Chemistry department also has an unvalued record of preparing its own students for careers through spin-off companies.

Not all our graduates pursue the subject directly after their degree, although most continue in an area related to Chemistry. Some enter conversion or training programmes, for such professions as Law, Teaching and Patent Attorney. However others enter Finance, Services, where their quantitative and analytical training is highly valuable.

Get in touch
The Chemistry department website contains much more detailed information on the courses, while the Oxford University information centre can also offer more information.

For more information on applying to Oxford, please visit: www.admissions.ox.ac.uk.

For more information on applying to Oxford, please visit: www.admissions.ox.ac.uk.

For more information on applying to Oxford, please visit: www.admissions.ox.ac.uk.

For more information on applying to Oxford, please visit: www.admissions.ox.ac.uk.